Optimizing the NPB SP benchmark for multi-core AMD
Opteron microprocessors

Stephen Whalen
Cray, Inc.

September 8, 2007

1 Description of SP

1.1 High-level description

Crudely described, SP seeks a steady-state solution to discretized Navier-Stokes equations in three
dimensions, with Dirichlet boundary data. The Alternating Direction Implicit (ADI) Method de-
couples the discretized problem into a set of three uncoupled systems of linear equations, one for
each of the nondimensionalized spatial coordinates &, 17, and {. SP uses the diagonal form of the
Beam and Warming approximate factorization algorithm [1, 5], giving the coefficient matrices a
scalar pentadiagonal structure [2].

The numerical problem itself is derived in detail in Chapter 3 of the NPB 1.0 Specification
[1], where SP appears as “Benchmark 2 at the end of the chapter. The discretization uses finite
differencing, requiring correction with numerical dissipation terms.

SP Class D uses a 408 x 408 x 408 grid, and advances the solution through 500 time steps.

1.2 Implementational details

The reference MPI implementation uses the Bruno-Cappello multi-partition scheme to distribute
the work over the processes [3]. This scheme partitions the problem domain into many subdomains,
referred to as “cells,” and then assigns multiple cells to each MPI process. Specifically, if there are
p processes, with p a perfect square, then the Bruno-Cappello method subdivides the domain into
p+/p cells. Then, /p of the cells are assigned to each process in such a way that every coordinate
plane intersecting the grid intersects exactly one cell on each processor. This method automatically
enforces efficient load balancing, and allows for overlap of communication with computation [4].
For SP Class D on 256 processes, the 408 x 408 x 408 grid is thus subdivided into 4096 cells of
average size (25.5)%; that is, each cell is ng X n, X ng, where each of ng, n,, and n; may be either 25
or 26. Each dimension must then be augmented by 1 in each direction to allow for data exchange.
The reference implementation describes the local grids using the arrays cell size(1:3,1:n),
start(l:3,1:n), and end(1:3,1:n). The first index of each of these arrays corresponds to a
spatial dimension, and the second index indicates a particular cell assigned to this process. For
cells having a face on the global domain boundary, the corresponding start(d,c) or end(d, c)

is set to 1. As such, the loops in the computational kernels may begin with start(d, c) and end
with cell size(d,c)-end(d, c)-1, thereby skipping those nodes having fixed boundary values.

1.3 Profiles

A portion of the function-level sampling profile is shown in Table 1(a). No single subroutine
dominates the runtime, but we shall focus our efforts on the top subroutine, compute_rhs.

Table 1(b) shows the compute_rhs line-level profile from the same run. This profile shows
that the finite-differencing loops that calculate the directional fluxes consume the majority of the

run time.
Samp % Cum. Samp Imb. Imb. Function
Samp % Samp Samp %

100.0% 100.0% 21407046 -- -- Total
21.3% 21.3% 4562247 256.72 1.4% compute_rhs_
13.9% 35.2% 2973804 630.58 5.2% x_solve_
10.7% 45.9% 2299151 411.94 4.4% vy_solve_
10.4% 56.4% 2235427 271.86 3.0% z_solve_

8.3% 64.7% 1773426 139.55 2.0% lhsz_
8.0% 72.7% 1710870 366.91 5.2% lhsy_
7.5% 80.1% 1601252 346.11 5.3% lhsx_
(a) Function-level profile
Samp % Samp Imb. Imb. Group
Samp Samp % Function
Source
Line
100.0% 21407046 -- -- Total
21.3% 4562247 -- -- compute_rhs_
rhs.f
23.0% 1048809 143.09 3.4% line.315
16.1% 733160 151.09 5.0% line. 196
15.3% 698678 178.79 6.2% line.28
15.0% 684080 135.81 4.9% line.72
8.9% 405243 103.02 6.1% line.275
8.7% 395992 112.16 6.8% line.395
7.8% 356392 100.84 6.8% line. 156

(b) Line-level profile for compute_rhs

Table 1: CrayPat sampling profile for SP Class D, 256 processes

17: c loop over all cells owned by this node

88:c¢c--—-———"-——"-——-------------- - -
19: do c =1, ncells

67: C-————— -
68: c compute xi-direction fluxes

69: c----—-------"-"-"-"-""-"-"""""""""""""""""""" "
70: do k = start(3,c), cell_size(3,c)-end(3,c)-1

71: do j = start(2,c), cell_size(2,c)-end(2,c)-1

72: do i = start(l,c), cell_size(l,c)-end(l,c)-1

-- [update rhs (i, j,k,m,c), 1 <m <5, with finite differences over 1]
122: end do

123: end do

124: end do

91: ¢c-------- - —————————— -
192: ¢ compute eta-direction fluxes

93: ¢c----------------- - ——_———————— -
194: do k = start(3,c), cell_size(3,c)-end(3,c)-1

195: do j = start(2,c), cell_size(2,c)-end(2,c)-1

196: do i = start(l,c), cell_size(l,c)-end(l,c)-1

-- [update rhs (i, j,k,m,c), 1 <m <5, with finite differences over j]
241: end do

242: end do

243: end do

310: C-—--—— -
311: ¢ compute zeta-direction fluxes

312: C--- -
313: do k = start(3,c), cell_size(3,c)-end(3,c)-1

314: do j = start(2,c), cell_size(2,c)-end(2,c)-1

315: do i = start(l,c), cell_size(l,c)-end(l,c)-1

-- [update rhs (i, j,k,m,c), 1 <m <5, with finite differences over k]|
361: end do

362: end do

363: end do

439: end do

Figure 1: Excerpt from compute_rhs reference source code
2 Optimizations

2.1 Flux calculations

Although the flux loops’ utilization of a regular computational stencil hints at an opportunity for
cache tiling, the small size of the cells frustrates any such attempt. To promote cache reuse, we

3

do k = start(3,c), cell_size(3,c)-end(3,c)-1
do j = start(2,c), cell_size(2,c)-end(2,c)-1

do i = start(l,c), cell_size(l,c)-end(1l,c)-1
[fully update rhs (i, j, k, 1, c) with finite differences over i, j, and k]
enddo

do i = start(l,c), cell_size(l,c)-end(1l,c)-1
[fully update rhs (i, j, k, 2, c) with finite differences over i, j, and k]
enddo

do i = start(l,c), cell_size(l,c)-end(1l,c)-1
[fully update rhs (i, j, k, 3, c) with finite differences over i, j, and k]
enddo

do i = start(l,c), cell_size(l,c)-end(1l,c)-1
[fully update rhs (i, j, k, 4, c) with finite differences over i, j, and k]
enddo

do i = start(l,c), cell_size(l,c)-end(1,c)-1
[fully update rhs (i, j, k, 5, c) with finite differences over i, j, and k]
enddo

enddo
enddo

Figure 2: Loop structure for optimized flux computation

turn instead to straightforward outer loop fusion.

The inner loops of the reference code’s three flux-calculating loop nests, outlined in Figure 1,
update of each five separate components of the rhs array. This is a five-dimensional array, with the
loop indices 1, j, k, and c in the first, second, third, and fifth dimensions of rhs, respectively; each
inner loop makes large-stride accesses through rhs by accessing rhs(i,j,k,m,c) forl <m <5.
One might think of this as an unrolled inner loop over m, although each value of m would have a
distinct loop body.

We can improve cache reuse, and reduce the number of such strided accesses, by fusing the
&-, -, and {-flux calculations into one loop nest over 1, j, and k. This makes more efficient use
of data, particularly the elements of the approximate solution u, while they are still in L1. If we
adopt the view of an unrolled inner loop over m, then we can improve performance even more by
interchanging the i and m loops. We accomplish this by fissioning the i loop so that all updates
to rhs(:,j,k,m,c) for fixed j, k, m, c are applied before incrementing any of these variables.
The resulting code is outlined in Figure 2. Incidentally, further promotion of the m loop toward the
outer loops is detrimental to performance.

global boundary plane —— “interior region”

i=—1012 i=cell_size(1l,c)

Figure 3: Special treatment of boundary conditions in computing numerical dissipation. Dia-
grammed here is the &-direction dissipation; the other directions simply require permutation of the
indices.

2.2 Dissipation calculations

We can also attempt to fuse the dissipation loops, but the boundary conditions become troublesome.
The numerical dissipation terms are computed independently in each coordinate direction. Away
from the boundary, in the portion of the domain we shall call the “interior region,” the numerical
dissipation in each direction is a standard second-order finite difference for the second derivative.
However, if one of the cell faces coincides with a domain boundary, then the next two parallel grid
planes must use stencils that account for the boundary conditions. A cell having a boundary face
is shown in Figure 3.

Potentially, in the single-process, single-cell case, a cell could have all of its faces on the
domain boundary. Such a condition is shown in Figure 4(a). We can only fuse those portions of
the loop nests that intersect, leaving six slabs that must be treated separately; see Figure 4(b).

When the cell size is sufficiently large, restructuring the dissipation loops in such a manner can
give a performance gain. When the surface-to-volume ratio is sufficiently large, however, the extra
loop overhead involved in treating the surface slabs separately erases any gains. We shall see that
the 256-process case is still large enough to see some gain from this transformation.

3 Results

The transformations described in Section 2 provide an approximate 7-10% gain in the benchmarks’
self-reported Mop/s rates, shown in Table 2.

Table 3 shows hardware counter data for runs using reference and optimized revisions of the
compute_rhs subroutine. By fusing loops, we are able to reduce cache activity altogether. The
cache hit rates remain relatively constant, with an approximate 94% hit rate in L1. There are
simply fewer accesses altogether: while the reference code visits the components of the rhs array
at least once for each spatial dimension, the optimized loop nests visit each site only once for the

k
. J.
i i

(a) Pictorial representation of the “interior regions” of a cell in each of the coordinate directions

(b) Union of the coordinate interior regions, together with exploded view showing
the six slabs that cannot be fused into a single loop nest

Figure 4: Worst-case scenario in which a single cell intersects all six boundary faces of the global
domain

MPI processes Reference code Fused flux loops Fissioned i loops New dissipation loops

(Mop/s/process) (Mop/s/process) (Mop/s/process) (Mop/s/process)
64 368.75 386.38 399.09 406.42
256 364.06 375.47 387.53 391.01

Table 2: Performance results for NPB SP Class D, before and after code optimizations. Code
changes are cumulative left to right.

compute_rhs

Reference code Optimized code
L1 D-cache accesses 43275548856 ops 37948771376 ops
L1 D-cache misses that hit in L2 2369349249 fills 1805933638 fills
L1 D-cache misses that miss in L2 341857068 fills 241702538 fills
Evictions to L2 195421129158 bytes 146542456687 bytes
Evictions to memory 54361207123 bytes 36852743359 bytes
D-TLB misses 23964050 misses 17231166 misses
HW FP Ops 66515979393 ops 59450882504 ops
HW FP Ops / User time 869.829 M/sec 1087.613 M/sec
LD & ST per TLB miss 1805.85 refs/miss 2202.33 refs/miss
LD & ST per D1 miss 15.96 refs/miss 18.53 refs/miss
User time 76.470 secs 54.662 secs
Avg Time FPUs stalled 11.901 secs 7.112 secs
Avg Time LSs stalled 1.552 secs 1.486 secs

Table 3: Hardware counter data for SP Class D, 256 processes, reported as per-process averages

flux calculations, and once for the dissipation, except for points near the boundary.

4 Conclusions

Parallelization of the ADI Method has been studied extensively in the last thirty years, resulting
in highly efficient domain decomposition strategies. The NPB SP benchmark demonstrates this
efficiency through very small communication costs, waiting on communication for less than 5% of
the total run time in the 256-process case.

Nevertheless, we have seen here that the serial portions of SP have left room for improvement.
At least in the case of the compute_rhs subroutine, the reference implementation loops through
the rhs array more often than necessary, creating superfluous cache activity. Fusing the multiple
loops into larger loop nests reduces the required numbers of loads and stores, cutting the execution
time of this subroutine by nearly 30%.

References

[1]

(2]

(3]

[4]

[5]

D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S. Fineberg,
P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan, and S. Weeratunga.
The NAS parallel benchmarks. Report RNR-94-007, NASA Advanced Supercomputing Divi-
sion, March 1994,

David Bailey, Tim Harris, William Saphir, Rob van der Wijngaart, Alex Woo, and Maurice
Yarrow. The NAS parallel benchmarks 2.0. RNR Technical Report NAS-95-020, NASA
Advanced Supercomputing Division, December 1995.

John Bruno and Peter R. Cappello. Implementing the Beam and Warming method on the
hypercube. In Proceedings of the third conference on Hypercube concurrent computers and
applications, pages 1073—-1087, New York, NY, USA, 1988. ACM Press.

Rob F. Van der Wijngaart. Efficient implementation of a 3-dimensional ADI method on the
iPSC/860. In Supercomputing *93: Proceedings of the 1993 ACM/IEEE conference on Super-
computing, pages 102-111, New York, NY, USA, 1993. ACM Press.

R. F. Warming and R. M. Beam. On the construction and application of implicit factored
schemes for conservation laws. In Symposium on Computational Fluid Dynamics, SIAM-AMS
Proceedings, volume 11, 1978.

